

Lethbridge Primary School's
Calculation Policy
(Reviewed in 2022)

Aims:

We aim to ensure that all pupils:

- Become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- Reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and develop an argument, justification of proof using mathematical language.
- Can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and preserving in seeking solutions.

Mathematics is an interconnected subject in which pupils need to be able to move fluently between representations of mathematical ideas. Pupils should make rich connections across mathematical ideas to develop fluency, mathematical reasoning and competence in solving increasingly sophisticated problems.

The expectation is that the majority of pupils will progress at broadly the same pace, although decisions about when to progress to the next stage should always be based on the security of pupils' understanding. Pupils who grasp concepts rapidly should be challenged through being offered rich and sophisticated problems before any acceleration through new content. Those who are not sufficiently fluent with earlier material should consolidate their understanding before moving on.

EYFS (taken from EYFS Development Matters Document 2021 \& Statutory Framework 2021)

'Developing a strong grounding in number is essential so that all children develop the necessary building blocks to excel mathematically. Children should be able to count confidently, develop a deep understanding of the numbers to 10, the relationships between them and the patterns within those numbers' (Development Matters, 2021).

Key Stage 1 (taken from the Mathematics Curriculum 2014)

The principle focus of mathematics in key stage 1 is to ensure that pupils develop confidence and mental fluency with whole numbers, counting and place value. This should involve working with numerals, words and the four operations, including with practical resources.

By the end of year 2, pupils should know the number bonds to 20 and be precise in using and understanding place value.

Lower Key Stage 2 (taken from the Mathematics Curriculum 2014)

The principal focus of mathematics teaching in lower key stage 2 is to ensure that pupils become increasingly fluent with whole numbers and the four operations, including number facts and the concept of place value. This should ensure that pupils develop efficient written and mental methods and perform calculations accurately with increasingly large whole numbers.

At this stage, pupils should develop their ability to solve problems, including with decimal place value. By the end of year 4, pupils should have memorised their multiplication tables up to and including the 12 multiplication table and show precision and fluency in their work.

Upper Key Stage 2 (taken from the Mathematics Curriculum 2014)

The principle focus of mathematics teaching in upper key stage 2 is to ensure that pupils extend their understanding of the number system and place value to include larger integers. This should develop the connections that pupils make between multiplication and division with fractions, decimals, percentages and ratio.

Problems will demand efficient written and mental methods of calculation. Pupils are introduced to the language of algebra. By the end of year 6, pupils should be fluent in written methods for all four operations, including long multiplication and division.

PROGRESSION OF NUMBERLINES

EYFS	Number track	Has the numbers inside the sections, rather than on the divisions	0	1	2	3		4	5	6	7	8	9	10
Moving towards end of year 1 expectation	Calibrated, numbered numberline	Equal divisions marked on the numberline and each division is numbered					3	4	5		7			
Year 1 - National age related expectation	Calibrated, unnumbered numberline	Equal divisions are marked, but left unnumbered for children to add relevant numbers to												
Year 2 - National age related expectation	Blank numberline	No divisions or numbers marked for the children												

Written methods for addition of whole numbers

The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use an efficient written method accurately and with confidence.

Addition

EYFS

Songs are a useful way to begin to use vocabulary.

In games, begin to count on and back on a number track. Beginning to use a number track/number line to jump on 7+3=10

1235

13	11	10

151617181920

Use lots of concrete (e.g. toys, cubes) and pictorial representations:

$$
2+5=7
$$

$$
3+1=4
$$

Where possible, numbers should be taught in the context of real life. Maths should be meaningful.

Addition

Year 1 - Age Related Expectations

Year 2 - Age Related Expectations

Year 3 - Age Related Expectations

- read, write and interpret mathematical
statements involving addition (+) and equals (=) signs
- represent and use number bonds
- add one-digit and two-digit numbers to 20,
including zero
- solve one-step problems that involve addition using concrete objects and pictorial representations, and missing number problems as seem below
$+=$ signs and missing numbers

$3+4=\square$	$\square=3+4$
$3+\square=7$	$7=\square+4$
$\square+4=7$	$7=3+\square$
$\square+\nabla=7$	$7=\square+\nabla$

Promoting covering up of operations and numbers.

Number lines (blank)

Using blank number lines
(Teacher model number lines with missing numbers)

Children use a 100 grid to add larger numbers.

- solve problems with addition:
- using concrete objects and pictorial representations, - applying their increasing knowledge of mental and written methods
- recall and use addition facts to 20 fluently, and derive and use related facts up to 100
- add and numbers using concrete objects, pictorial representations, and mentally, including:
- a two-digit number and ones
- a two-digit number and tens
- two two-digit numbers
- adding three one-digit numbers
- show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
- recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.

Partition into tens and ones and recombine (with dienes, then pictorially and then as number sentences)

$$
12+23
$$

$$
10+2+20+3
$$

$$
10+20=30
$$

$$
2+3=5
$$

$$
30+5=35
$$

refine to partitioning the second number only:

$$
23+12=23+10+1+1
$$

$$
=33+1+1
$$

$$
=35
$$

$$
\underline{120}
$$

$+\underline{42}$

- add and subtract numbers mentally, including:
- a three-digit number and ones
- a three-digit number and tens
- a three-digit number and hundreds
- add and subtract numbers with up to three digits, using formal written methods of columnar addition - estimate the answer to a calculation and use inverse operations to check answers
- solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction.

Partition into hundreds, tens and ones and

 recombineEither partition both numbers and recombine or partition the second number only e.g.

$358+73=358+70+3$

$=428+3$
$=431$

Pencil and paper procedures (extended method to help understand the principle of regrouping):
$83+42=125$

$$
\begin{equation*}
83 \tag{83}
\end{equation*}
$$

5

Addition

Year 4 - Age Related Expectations	Year 5 - Age Related Expectations	Year 6 - Age Related Expectations
- add numbers with up to 4 digits using the formal written methods of columnar addition and where appropriate - estimate and use inverse operations to check answers to a calculation - solve addition and solve two-step problems in contexts, deciding which operations and methods to use and why. $\begin{array}{r} 3587 \\ +\quad 675 \\ \hline 4262 \\ \hline \end{array}$ Extend to decimals (same number of decimals places) and adding several numbers (with different numbers of digits). Model negative numbers using a number line.	- add whole numbers with more than 4 digits, including using formal written methods (columnar addition) - add numbers mentally with increasingly large numbers - use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy - solve multi-step problems in contexts, deciding which operations and methods to use and why. Pencil and paper procedures Extend to numbers with any number of digits and decimals with 1 and 2 decimal places. $124.9+117.25=242.15$ 124.90 put in a zero to secure the place value $+\frac{117.25}{\frac{242.15}{11}}$	- solve multi-step problems in contexts, deciding which operations and methods to use and why - use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy. Algebra - use simple formulae - express missing number problems algebraically - find pairs of numbers that satisfy an equation with two unknowns

Written methods for subtraction of whole numbers

The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use an efficient written method accurately and with confidence.

| EYFS |
| :--- | :--- |
| Songs are a useful way to begin to use |
| vocabulary. |
| Where possible, numbers should be taught |
| in the context of real life. Maths should be |
| meaningful. | Use lots of concrete (e.g. counters and cubes) and pictorial representations:

Subtraction

Year 1 - Age Related Expectations

- read, write and interpret mathematical statements involving subtraction (-) and equals (=) signs - represent and use number bonds and related subtraction facts within 20
- subtract one-digit and two-digit numbers to 20 including zero
- solve one-step problems that involve subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=-9$.

Pictures / marks

Sam spent 4p. What was his change from 10p?

$-=$ signs and missing numbers	
$7-3=\square$	$\square=7-3$
$7-\square=4$	$4=\square-3$
$\square-3=4$	$4=7-\square$
$\square-\nabla=4$	$4=\square-\nabla$

Visual / practical activities

Number lines

The difference between 7 and 11
(Counting on)
To reinforce concept. Practical strategies essential to see 'difference'.

Year 2 - Age Related Expectations

- solve problems with subtraction:
- using concrete objects and pictorial representations, including those involving numbers, quantities and measures - applying their increasing knowledge of mental and written methods
- recall and use subtraction facts to 20 fluently, and derive and use related facts up to 100
- subtract numbers using concrete objects,
pictorial representations, and mentally, including:
- a two-digit number and ones
- a two-digit number and tens
- two two-digit numbers
- show that subtraction has to be done in the order stated
- recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.

Pencil and paper procedures

$52-21=31$

$$
\begin{array}{lll}
-1 & -10 & -10
\end{array}
$$

Year 3 - Age Related Expectations

- subtract numbers mentally, including:
- a three-digit number and ones
- a three-digit number and tens
- a three-digit number and hundreds
- subtract numbers with up to three digits, using formal written methods of columnar subtraction
- estimate the answer to a calculation and use inverse operations to check answers
- solve problems, including missing number problems, using number facts, place value, and more complex subtraction.

Use known number facts and place value to subtract
Develop year 2 skills using 3 digit number -2 digit number

Estimate first....
197-15=182

Pencil and paper procedures (extended method to help understand the principle of regrouping)
98
$-\frac{24}{4}(8-4)$
$\frac{70}{74} \quad(90-20)$
74
Use decomposition when appropriate

- constructing own lines, if appropriate (Teachers model jottings appropriate for larger numbers) Children use a 100 grid to subtract from larger numbers.	Counting on $84-56=28$ Mental Method Subtract 9 or 11. Begin to add/subtract 19 or 21 $35-9=26$ Use known number facts and place value to subtract (partition second number only) $\begin{aligned} 37-12 & =37-10-2 \\ & =27-2 \\ & =25 \end{aligned}$	$\begin{aligned} & 92 \\ &-\frac{38}{54} \text { (explain what happens...see below) } \\ & \\ & 90+2 \rightarrow \rightarrow-\frac{30+12}{30+8} \\ & \underline{30+8}-\frac{30+4}{50} \end{aligned}$ Formal method of column subtraction: $\begin{array}{r} 82^{1} \\ -\quad 38 \\ \hline 54 \end{array}$

Subtraction

Year 4 - Age Related Expectations

- subtract numbers with up to 4 digits using the formal written methods of columnar subtraction where appropriate
- estimate and use inverse operations to check answers to a calculation
- subtraction two-step problems in contexts,
deciding which operations and methods to use and why

Formal method of column subtraction with four digits:

$$
\begin{array}{cc}
2^{4} 4^{1} \\
352 & 50^{9} 0^{1} 0 \\
-\frac{178}{174} & -\quad 457 \\
\hline 4543
\end{array}
$$

Year 5 - Age Related Expectations

- subtract whole numbers with more than 4 digits, including using formal written methods - subtract numbers mentally with increasingly large numbers
- use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- solve multi-step problems in contexts, deciding which operations and methods to use and why.

Pencil and paper procedures

Develop the use of decomposition and then extend to up to 2 decimal places
48.42-37.61 =
$4{ }^{78} .{ }^{14} 2$
$\begin{array}{llll}3 & 7 & 6 & 1 \\ 1 & 0 & 8 & 1\end{array}$

Extend to up to 3 decimal places and numbers with a different number of decimal places
302.63-178.124 =

291
$362.6^{2 / 3}{ }^{1} 0$
-178.124
124.506

Year 6 - Age Related Expectations

- perform mental calculations, including with mixed operations and large numbers
- use their knowledge of the order of operations to carry out calculations involving the four operations
- solve multi-step problems in contexts, deciding which operations and methods to use and why - use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.
Algebra
- use simple formulae
- express missing number problems algebraically
- find pairs of numbers that satisfy an equation with two unknowns

Written methods for multiplication of whole numbers

The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use an efficient written method accurately and with confidence.

Children are expected to be able to recall all multiplication facts to 12×12 by the end of year 4 .

| EYFS |
| :--- | :--- |
| The link between addition and multiplication can be |
| introduced through doubling and reinforced through |
| repeated addition of the same number. |
| Children are given multiplication problems set in a real |
| life context. Children are encouraged to visualise the |
| problem e.g. How many fingers on two hands? How many |
| sides on three triangles? How many legs on four ducks? |

Multiplication

Year 1 - Age Related Expectations

- solve one-step problems involving multiplication by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

Pictures and symbols

There are 3 sweets in one bag.
How many sweets are there in 5 bags?

(Recording on a number line modelled by the teacher when solving problems)

Use of bead strings to model groups of.

Create arrays using counters/ cubes to show multiplication sentences. Begin to draw arrays:

$2 \times 6=12$

$\bullet \bullet \bullet \bullet \bullet$

- • • • -

Year 2 - Age Related Expectations

- recall and use multiplication facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers - calculate mathematical statements for multiplication within the multiplication tables and write them using the multiplication (x) and equals $(=)$ signs
- show that multiplication of two numbers can be done in any order (commutative)
- solve problems involving multiplication using materials, arrays, repeated addition, mental methods, and multiplication facts, including problems in contexts.

$x=$ signs and missing numbers

$7 \times 2=\square \quad \square=2 \times 7$
$7 \times \square=14 \quad 14=\square \times 7$
$\square x 2=14 \quad 14=2 \times \square$
$\square x \nabla=14 \quad 14=\square \times \nabla$

Arrays and repeated addition

Draw arrays in different rotations to find commutative multiplication sentences:

```
- - - \(4 \times 2\) or \(4+4\)
\(2 \times 4\)
```

or repeated addition
$2+2+2+2$

$\begin{array}{lllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$
Doubling multiples of 5 up to 50
$15 \times 2=30$

Partition
$(10 \times 2)+(5 \times 2)$
$20+10=30$

Year 3 - Age Related Expectations

- recall and use multiplication and division facts for the 3,4 and 8 multiplication tables - write and calculate mathematical statements for multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods - solve problems, including missing number problems, involving multiplication, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.

$x=$ signs and missing numbers

Continue using a range of equations as in Year 2 but with appropriate numbers.

Number lines
 6×3

Grid method (use partitioning):
$35 \times 2=70$

x	30	5
2	60	10

Estimate first: 23×7 is approximately $20 \times 10=200$
$23 \times 7=161$

Multiplication		
Year 4 - Age Related Expectations	Year 5 - Age Related Expe	Year 6 - Age Related Expectations
- recall multiplication tables up to 12×12 - use place value, known and derived facts to multiply mentally, including: multiplying by 0 and 1; multiplying together three numbers - recognise and use factor pairs and commutativity in mental calculations - multiply two-digit and three-digit numbers by a one-digit number using formal written layout - solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects. Pencil and paper procedures Revisit, practise and become fluent in short multiplication: 72	- identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers - know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers - establish whether a number up to 100 is prime and recall prime numbers up to 19 - multiply numbers up to 4 digits by a one- or twodigit number using a formal written method, including long multiplication for two-digit numbers - multiply numbers mentally drawing upon known facts - multiply and whole numbers and those involving decimals by 10,100 and 1000 recognise and use square numbers and cube numbers, and the notation for squared (2) and cubed (3) - solve problems involving multiplication including using their knowledge of factors and multiples,	- multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication - perform mental calculations, including with mixed operations and large numbers - identify common factors, common multiples and prime numbers - use their knowledge of the order of operations to carry out calculations involving the four operations - use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy. Ratio \& Proportion - solve problems involving the relative sizes of two quantities where missing values can be found by using integer - multiplication and division facts

576

1

Mental multiplication
 30×70
 $3 \times 7=21$ therefore $30 \times 70=2100$

squares and cubes

- solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign
- solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates.

Pencil and paper procedures

Long multiplication, starting with two digit multiplied by two digit, progressing to four digits multiplied by two digits.

72

	X	3	8
	5	7	6
2	1	6	0
2	7_{1}	3	6

3452

$\times 31$ 3452
103560 107012

- solve problems involving the calculation of percentages [for example, of measures, and such as 15% of 360] and the use of percentages for comparison
- solve problems involving similar shapes where the scale factor is known or can be found - solve problems involving unequal sharing and grouping using knowledge of fractions and multiples.
Algebra
- use simple formulae
- express missing number problems algebraically - find pairs of numbers that satisfy an equation with two unknowns

Written methods for division of whole numbers

The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use an efficient written method accurately and with confidence.

EYFS
Division can be introduced through halving or
sharing an equal amount into 2 groups.
Children need to see and hear representations
of division as both grouping and sharing.
Grouping model: Mum has 6 socks. She grouped
them into pairs. How many pairs did she make?
Sharing model: I have 10 sweets. I want to share
them with my friend. How many will we have each?

Year 4 - Age Related Expectations

 - recall division facts for multiplication tables up to 12×12 - use place value, known and derived facts to divide mentally, including: dividing by 1 ;
Formal method of short division:

| 4 | $8 \quad 7 \quad 2$ |
| :--- | :--- | :--- |

Year 5 - Age Related Expectations

 - divide numbers mentally drawing upon known facts - divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context- divide whole numbers and those involving decimals by 10,100 and 1000
- solve problems involving, squares and cubes
- solve problems involving addition, subtraction, multiplication and division and a combination of these,
- solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates.

Pencil and paper procedures

SHORT DIVISION METHOD with remainders

Year 6 - Age Related Expectations

- divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and - - interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
- divide numbers up to 4 digits by a two-digit number using the formal written method of short division where - - appropriate, interpreting remainders according to the context - perform mental calculations, including with mixed operations and large numbers
- use their knowledge of the order of operations to carry out calculations involving the four operations
- solve problems involving addition, subtraction, multiplication and division
- use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.
Ratio \& Proportion
- solve problems involving the relative sizes of two quantities where missing values can be found by using integer - multiplication and division facts
- solve problems involving the calculation of percentages [for example, of measures, and such as 15% of 360] and the use of percentages for comparison
- solve problems involving similar shapes where the scale factor is known or can be found
- solve problems involving unequal sharing and grouping using knowledge of fractions and multiples.
Algebra
- use simple formulae
- express missing number problems algebraically
- find pairs of numbers that satisfy an equation with two unknowns

Pencil and paper procedures
LONG DIVISION:

		$\begin{array}{r} 291 \\ 4 5 \longdiv { 1 3 0 9 5 } \\ \frac{90}{409} \\ \frac{405}{45} \\ 4 \\ 45 \end{array}$ Developing understanding of how to write remainders as fractions or decimals

